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Abstract. ESBMC implements many state-of-the-art techniques that
combine abstract interpretation and model checking. Here, we report
on new and improved features that allow us to obtain verification re-
sults for previously unsupported programs and properties. ESBMC now
employs a new static interval analysis of expressions in programs to in-
crease verification performance. This includes interval-based reasoning
over booleans and integers, and forward-backward contractors. Other
relevant improvements concern the verification of concurrent programs,
as well as several operational models, internal ones, and also those of
libraries such as pthread and the C mathematics library. An extended
memory safety analysis now allows tracking of memory leaks that are
considered still reachable.

1 Software Architecture

ESBMC [46] is a mature, permissively licensed open-source context-bounded
model checker for the verification of single- and multi-threaded C programs for
various code safety violations (e.g., buffer overflows, dangling pointers, arith-
metic overflows) and user-defined assertions. It has been successfully participat-
ing in the SV-COMP competitions for many years due to our continuous work
towards improving its performance. ESBMC transforms a given C program using
a Clang-based [I1] front-end into an intermediate representation in the GOTO
language [3], which is symbolically executed to produce verification formulae
passed to one or more SMT solvers. In addition, ESBMC implements state-of-
the-art incremental BMC and k-induction proof-rule algorithms based on SMT
and Constraint Programming (CP) solvers.
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2 Verification Approach

Interval analysis In this year, ESBMC interval analysis was improved using Ab-
stract Interpretation techniques [5]. We used the integer domain (with infinities)
as the abstract domain for SV-COMP. The domain consists of, for each state-
ment in the program, keeping the box interval (i.e., a minimum and mazimum)
for all variables. ESBMC also supports interval arithmetic and widening strate-
gies (through extra- and interpolation). Once computed, the intervals are used
for optimizations (i.e., dead code elimination and constant folding) and invariant
instrumentation.

Regarding the new code instrumentation, the main use of intervals is to
generate invariants which the k-induction strategy benefits from most. This is
done by adding assumptions restricting the value of variables. In addition, the
set of variables used for these assumptions has been reduced to those occurring
in conditional statements and guards only. Lastly, we expanded the types of
instrumented statements: assertions, conditionals, and function calls.

Contractors ESBMC v7.4 employs another method to refine intervals based
on contractors. Contractors [I0/14] are commonly used in the context of Con-
straint Satisfaction Problems (CSPs), that is, when variables, their (real-valued)
domains, and constraints over those variables are fixed. A contractor is an op-
eration on n-dimensional boxes (product of intervals) respecting the given con-
straints, i.e., it refines the domains such that no solutions to the CSP are lost. A
particularly efficient one for CSPs containing a single constraint is the Forward-
backward contractor [TI8I5]. It operates in two stages: forward evaluation and
backward propagation [I4/T]. In scenarios with multiple constraints, the forward-
backward contractor is applied to each constraint independently.

ESBMC utilizes the forward-backward contractor implemented in the Ibex
library [2] to refine the results of the interval analysis mentioned above. That is,
conditions of statements such as “if” and loops in the program are relaxed to
conditions over reals, where possible, and then the contractor is applied to this
relaxed condition. The result is a refined set of intervals for the variables involved.
These refined intervals are then restricted to the original variable domains, which
— in case of, e.g., integers — results in a further reduction of the size of intervals.
The intervals contracted in this way generally enhance the results of the interval
analysis employed by ESBMC and benefit its k-induction strategy.

Memory leaks This year, ESBMC employs a refined check for the valid-memtrack
property. This property is loosely described as only allowing those dynamically
allocated objects to survive that are still reachable at the end of the program’s
execution by following a path of pointers stored in objects eventually referenced
by global variables. A property violation witness has to contain proof of unreach-
ability of a dynamic allocation starting from any global variable.

The new algorithm leverages the existing one tracking the lifetime of al-
locations for the walid-memcleanup property, but it specifically excludes still-
reachable objects from the check. This condition is encoded into an SMT formula



using the paths deterministically described by expressions of type struct, union,
pointer, or array with constant size. Each possible successor along the path is
obtained through the value-set, and the validity is encoded through guards which
have to hold at the end of execution.

C mathematical library ESBMC v7.4 offers extended support for the math.h
library. Accurate modeling of its semantics is crucial for reasoning on the behav-
ior of complex floating-point software. For example, most neural network code
relies on 32-bit floats and may invoke the math.h library to compute the result
of activation functions, positional encodings, and vector normalisations [12].

The IEEE 754 standard [9] mandates bit-precise semantics for a small subset
of the math.h library only. This subset includes addition, multiplication, division,
sqrt, fma, and other support functions such as remquo. In contrast, the behavior
of most transcendental functions (e.g., sin, exp, log) is platform-specific. Still,
the standard recommends implementing the correct rounding whenever possible.

As a tradeoff between precision and verification speed, ESBMC now features
a two-pronged design. For the most commonly-used float functions, we bor-
row the MUSL plain-C implementation of numerical algorithms [I3]. For the
corresponding double functions, we employ less complex algorithms with ap-
proximate behavior.

Data races Data races occur when multiple threads concurrently access the same
memory location, and at least one of these accesses involves a write operation.
ESBMC’s algorithm for checking data races extends the static code instrumen-
tation CBMC [3] uses. The idea is to add a flag A’, initially true, to each variable
A involved in an assignment. Directly after the assignment to A, A’ is reset to
false. To identify races, we assert that the value of A’ is false when A is ac-
cessed. Subsequently, we outline the challenges encountered by ESBMC and the
improvements we have implemented.

As this method introduces additional instructions into the program, the
potentially larger number of thread interleavings is counteracted by inserting
atomic blocks appropriately — subject to ensuring accuracy, the atomic block
encompasses the assertion on A’, original assignment to A, and setting A’, in
sequence. Data races are now also checked on access of arrays with non-constant
indices. The most challenging aspect of data race detection is the dereference
of pointers, as the pointer would have to be instrumented but is not statically
known through the value-set analysis. Thus, the new implementation is hybrid,
addressing cases unsuitable for static analysis during symbolic execution, thereby
enabling ESBMC to detect more types of data races.

3 Strengths and Weaknesses

The interval analysis improved and provided better invariants for ESBMC. The
new optimizations help ESBMC to solve new benchmarks in categories with
multiple path conditions (i.e., ECA). The main weakness of the method is that



our Abstract Interpreter only has partial support for widening, and it is not
context-aware (i.e., function parameters and global variables cannot be tracked
globally). This results in a slowdown for categories with loops with thousands
of statements (e.g., Hardware).

While contractors are highly regarded for their ability to provide assured
limits on solutions, their cautious approach may lead to overly broad results and
less precise conclusions. Therefore, a more rigorous evaluation of contractors is
essential to assess their advantages and limitations effectively.

The new algorithm for the valid-memtrack sub-property allowed ESBMC to
identify 70/153 violations correctly with no incorrect verdicts (last year: 0/134).
There is a theoretical weakness in the current implementation concerning dy-
namic allocations only reachable through pointers stored in arrays of statically
unknown size. It could result in incorrect-false verdicts, but it has not been
observed in test cases, yet.

Without operational models of the math.h library, ESBMC would assign non-
deterministic results, which may cause incorrect counterexamples to be returned.
This behavior is especially evident for older versions of ESBMC on neural net-
work code [12], as it usually contains many mathematical operations. ESBMC
v7.4 fixes this semantic issue by providing explicit operational models for many
common functions in math.h, thus yielding no incorrect results on the bench-
marks in [12], and achieving second place in the ReachSafety-Floats sub-category.

From the competition results, the data race detection of ESBMC v7.4 is
promising. Compared to the previous version, the new algorithm supports more
types of expressions and reduces the verification time. The relatively high number
of 2.2% incorrect-true verdicts is mostly due to still missing support for detecting
data races during dereferences of pointers to compound types.

We will address the weaknesses identified in this competition in the future.

4 Tool Setup and Configuration

To setup and run ESBMC, follow the instructions in the README . md file. ESBMC
can also be run via the Python wrapper esbmc-wrapper.py for simplified usage
in the competition. An example command line is:

esbmc-wrapper.py -s kinduction -a 64 -p unreach-call.prp example.c

5 Software Project

The ESBMC development is funded by ARM, EPSRC EP/T026995/1, EPSRC
EP/V000497/1, Etherecum Foundation, EU H2020 ELEGANT 957286, UKRI
Soteria, Intel, and Motorola Mobility (through Agreement N° 4/2021). It is pub-
licly available at http://esbmc.org under the terms of the Apache License
2.0 and static release builds of ESBMC are provided at https://github.com/
esbmc/esbmcl The version that participated in SV-COMP 2024 is available at
https://doi.org/10.5281/zenodo.10198805.
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