
ESBMC v7.6: Enhanced Model Checking of C++
Programs with Clang AST

Xianzhiyu Lia,∗, Kunjian Songa, Mikhail R. Gadelhab, Franz Braußea, Rafael
S. Menezesa,c, Konstantin Korovina, Lucas C. Cordeiroa,c

aThe University of Manchester, Oxford Rd, Manchester, M13 9PL, England, UK
bIgalia, Bugallal Marchesi, 22, 1º, A Coruña, 15008, Galicia, Spain

cFederal University of Amazonas, Av. General Rodrigo Octávio Jordão Ramos,
6200, Manaus, 69080-005, Amazonas, Brazil

Abstract
This paper presents Efficient SMT-Based Context-Bounded Model Checker
(ESBMC) v7.6, an extended version based on previous work on ESBMC v7.3
by K. Song et al. [1]. The v7.3 introduced a new Clang-based C++ front-end
to address the challenges posed by modern C++ programs. Although the
new front-end has demonstrated significant potential in previous studies,
it remains in the developmental stage and lacks several essential features.
ESBMC v7.6 further enhanced this foundation by adding and extending
features based on the Clang AST, such as 1 exception handling, 2 extended
memory management and memory safety verification, including dangling
pointers, duplicate deallocation, memory leaks and rvalue references and 3
new operational models for STL updating the outdated C++ operational
models. Our extensive experiments demonstrate that ESBMC v7.6 can handle
a significantly broader range of C++ features introduced in recent versions
of the C++ standard.
Keywords: Formal Methods, Model Checking, Software Verification

∗Corresponding author
Email addresses: xianzhiyu.li@postgrad.manchester.ac.uk (Xianzhiyu Li),

kunjian.song@postgrad.manchester.ac.uk (Kunjian Song), mikhail@igalia.com
(Mikhail R. Gadelha), franz.brausse@manchester.ac.uk (Franz Brauße),
rafael.menezes@postgrad.manchester.ac.uk (Rafael S. Menezes),
konstantin.korovin@manchester.ac.uk (Konstantin Korovin),
lucas.cordeiro@manchester.ac.uk (Lucas C. Cordeiro)

Preprint submitted to Science of Computer Programming June 23, 2025



1. Introduction

C++ is one of the most popular programming languages used to build
high-performance and real-time systems, such as operating systems, banking
systems, communication systems, and embedded systems [2]. However, mem-
ory safety issues remain a major source of security vulnerabilities in C++
programs [3]. Fan et al. [4] created a dataset of C/C++ vulnerabilities by
mining the Common Vulnerabilities and Exposures (CVE) database [5] and
the associated open-source projects on GitHub, then curated the issues based
on Common Weakness Enumeration (CWE) [6]. According to their findings,
two out of the top three vulnerabilities are caused by memory safety issues:
Improper Restriction of Operations within the Bounds of a Memory Buffer
(CWE-119) and Out-of-bounds Read (CWE-125) [4].

The limitation of software testing resides in the user inputs [7]. Only
a limited number of execution paths may be tested since test cases involve
human inputs in the form of concrete values [8]. In contrast to testing,
formal verification techniques can be used more systematically to formally
reason about a program, although they suffer from the state-space explosion
problem [9]. There is an increasing adoption of formal verification techniques
for C programs in the industry, e.g., Amazon has been using model-checking
techniques to prove the correctness of their C-based systems in Amazon Web
Services (AWS); this has positively impacted their code quality, as evidenced
by the increased rate of bugs found and fixed [10].

Formal verification of C++ programs is more challenging than C programs
due to the sophisticated features, such as the STL (Standard Template
Libraries) containers, templates, exception handling, and object-oriented
programming (OOP) paradigm [2]. Several tools have been developed for
verification of C++ programs, most prominent are: CBMC [11], DIVINE [12],
and ESBMC [1]. But the existing state-of-the-art verification tools have only
limited C++ feature support [13]. CBMC [11] is a bounded model checker that
converts source code into an intermediate representation for verification, with
limited support for polymorphism and exception handling [14]. DIVINE [12],
an explicit-state model checker, uses LLVM bitcode [15] as an intermediate
representation for verifying C++ programs, with limited ability to handle
standard containers and inheritance [13]. For ESBMC, Ramalho et al. [16] and
Monteiro et al. [13] initiated the support for C++ program verification. Since
then, ESBMC has undergone heavy development to support recent versions
of the C++ standard [17]. This research builds upon the Clang-based C++

2



front-end introduced in ESBMC v7.3, which replaced the legacy parser with
a more robust tool. In this work, we refine and extend these contributions:

• Complete Redesign: ESBMC’s C++ front-end has undergone a
complete restructuring and now relies on Clang [15]. By leveraging
Clang’s parsing and semantic analysis capabilities [18, 19], we check the
input program’s Abstract Syntax Tree (AST) using a production-quality
compiler. This eliminates static analysis logic and ensures enhanced
accuracy and efficiency.

• Object Models Details: We provide comprehensive insights into the
object models used to achieve seamless conversion of C++ polymorphism
code to ESBMC’s Intermediate Representation (IR).

• Simplified Type Checking for Templates: The new Clang-based
front-end greatly simplifies type checking for templates, streamlining
ESBMC’s ability to adapt to C++ advancements.

Between ESBMC v7.3 and this work, we not only refined existing features
but also introduced several new verification capabilities:

• Extended C++ Memory Management: We have extended the
implementation of the dynamic memory operators new and delete in
our new front-end, which enhances ESBMC’s ability to verify memory
safety issues.

• Modeled Rvalue References: Our new Clang-based C++ front-end
models the key C++11 feature of rvalue references [20], supports the
move function and move semantics.

• C++ Exception Handling: We have implemented exception han-
dling based on Clang AST and extended the exception specification.
Additionally, we adapted the symbolic engine to match thrown excep-
tions. This enhancement enables ESBMC to support exceptions in
C++11 and later versions.

• Updated C++ Operational Models (OMs): We enabled OMs
from ESBMC v2.1 and maintained the outdated OMs to adapt them
for the new Clang-C++ front-end.

3



By introducing these features, our work significantly enhances ESBMC’s
C++ verification capabilities, paving the way for more robust and efficient
verification of C++ programs and their variants. This work primarily focuses
on the improvements made to ESBMC across its different versions, with
contributions being relative to its previous iterations. Comparisons with other
verification tools will be explored in future work.

This paper is organized as follows: we begin with a brief introduction
to SMT-based BMC techniques and the limitations of previous versions of
ESBMC. In Section 3, we present the implementation of core C++ language
features based on the Clang AST, along with detailed process flows. Sec-
tion 4 provides the experimental results of the benchmarks used and analyzes
potential threats to validity. Finally, in Section 5, we conclude and outline
future work.

2. Background

ESBMC’s verification for C++03 programs reached its maturity in version
v2.1, presented by Monteiro et al. [13]. ESBMC v2.1 provides a first-order
logic-based framework that formalizes a wide range of C++ core languages,
verifying the input C++ programs by encoding them into SMT formulas.
Since C++ Standard Template Libraries (STL) contain optimized assembly
code not verifiable using ESBMC, ESBMC v2.1 tackled this problem using a
collection of C++ Operational Models (OMs) to replace the STL included
in the input program. The OMs are abstract representations mimicking the
structure of the STL, adding pre- and post-conditions to all STL APIs [21].
Combining these approaches, ESBMC v2.1 outperformed other state-of-the-
art tools evaluated over a large set of benchmarks, comprising 1513 test
cases [13]. Nonetheless, ESBMC v2.1 employs a Flex and Bison-based front-
end from CBMC [11], which leads to hard-to-maintain code and can hardly
evolve to support modern features introduced in C++11 and later versions.
Between v2.1 and v7.3, the focus was on developing a new C++ front-end.
C++ verification using Clang AST was introduced in v7.3, which significantly
improved the Clang-based front-end and made it the first version capable
of handling most modern C++ features. As a result, v2.1 serves as the
meaningful point of comparison, as it represents the state of ESBMC before
the new C++ front-end was introduced.

4



2.1. SMT-based BMC technique
The core functionality of ESBMC is based on SMT solvers to process a

decidable fragment of first-order logical formulas derived from intermediate
representations (IR), thereby enabling efficient model checking. In BMC, the
analyzed program is modeled as a state transition system, derived from the
control-flow graph (CFG) [22]. The CFG is created during the translation
from program code to single static assignment (SSA) form. Nodes in the
CFG represent assignments or conditional statements, while edges represent
possible changes in the program’s control flow. Consider a transition system
M , a property ϕ, and an integer parameter k. Bounded Model Checking
(BMC) unrolls the system k times, converting it into a verification condition
ψk. The condition ψk is satisfiable if and only if a counterexample of length
k or less exists for the property ϕ. This model-checking problem can be
formalized by constructing the following logical formula:

ψk = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨

i=0
¬ϕ(si) (1)

In this formulation, I denotes the set of initial states of M , T (si, si+1)
describes the transition relation between states si and si+1, and ϕ(si) is the
safety property evaluated at state si. The formula I(s0) ∧ ∧k−1

i=0 T (si, si+1)
represents the executions of M over k steps, while ∨k

i=0 ¬ϕ(si) indicates that
ϕ is violated in some state si for 0 ≤ i ≤ k. In cases where the formula (1)
is satisfiable, an SMT solver can produce a satisfying assignment. This
assignment enables us to determine the values of the program variables, which
can then be used to construct a counterexample. Such a counterexample for
the property ϕ is a sequence of states s0, s1, . . . , sk where s0 ∈ S0, with S0
representing the set of initial states, and T (si, si+1) holds for 0 ≤ i < k.

On the other hand, if the formula (1) is unsatisfiable, no error state
is reachable in k steps or fewer. However, this does not guarantee the
completeness of BMC techniques, as counterexamples with lengths exceeding
k may still exist. To ensure completeness, it is necessary to establish an
upper bound on the depth of the state space. This involves confirming that
all significant system behaviors have been explored, ensuring that further
search only exhibits states that have already been verified, which can be
achieved using k-induction to prove that the system remains correct beyond
the explored states [23, 24].

5



2.2. Old C++ front-end in v2.1
The version of ESBMC in Monteiro et al. [13] used an outdated CPROVER-

based front-end [11] with the following limitations.

1. For the type-checking phase, ESBMC could not provide meaningful
warnings or error messages.

2. It was inefficient at generating a body for default implicit non-trivial
methods in a class, such as C++ copy constructors or copy assignment
operators.

3. The parser of the old front-end needed to be manually updated to cover
the essential C++ semantic rules [25], which leads to hard-to-maintain
code to keep up with the C++ evolution.

4. The old front-end contained excessive data structures and procedures
auxiliary to scope resolution and function type-checking.

5. The type-checker [25] of the old front-end only worked with a CPROVER-
based parse tree and supports features up to the C++03 standard [26].
We found adapting it to the new C++ language and library features
difficult.

6. The old front-end used a speculative approach to guess the arguments
for a template specialization and a map to associate the template
parameters to their instantiated values, which leads to hard-to-maintain
and hard-to-debug code in the case of recursive templates. Additionally,
owing to its limited static analysis, the old front-end could not provide
any early warning when there is a circular dependency between the
templates.

Following the introduction of ESBMC v7.3 by K. Song et al. [1], these
limitations have been addressed. Clang can provide detailed error messages
and warnings during the type-checking phase and automatically generate
implicit methods for classes. Notably, the Clang-based approach solves the
problem of needing continuous maintenance to adapt to new C++ feature
changes. However, ESBMC v7.3 lacked full support for rvlaue references,
exception handling, and dynamic memory verification. These limitations
affected its ability to handle modern C++ programs. In this work, we
extend the Clang-based C++ front-end by addressing these gaps, proposing
approaches to ensure compliance with recent C++ standards [17].

6



3. Model Checking C++ Programs using Clang AST

Figure 1 illustrates ESBMC’s verification pipeline for C++ programs.
The new Clang-C++ front-end type-checks and converts the input C++
program (along with the corresponding OMs) into the GOTO program repre-
sentation [14, 27]. Then, the GOTO program will be symbolically executed
to generate the SSA form of the program, thus generating a set of logical
formulas consisting of the constraints and properties. An SMT solver is used
to check the satisfiability of the formulas, giving a verdict VERFICATION
SUCCESSFUL if no property violation is found up to the bound k or a
counterexample in case of property violation (cf. Section 2.1).

GOTO
Program

Symbolic
Execution

Engine

SMT
Solver

SMT
formula

Verification
Successful

Property 
holds

Counterexample

Property 
violation

clang-based
C++ frontend

Input C++
programs

Figure 1: ESBMC architecture for C++ verification. The grey block represents the
extended Clang-based C++ front-end developed in ESBMC v7.6.

3.1. Polymorphism
The traditional approach for achieving polymorphism makes use of virtual

function tables (also known as vtables) and virtual pointers (known as vptrs).
While the Clang AST does not include information about virtual tables or
virtual pointers of a class, it provides users with enough information to enable
them to create their own vtables and vptrs. In the new Clang-based C++ front-
end, we reimplemented the vtable and vptr construction mechanism following
a similar approach as ESBMC v2.1, but with significant simplifications based
on the information provided in the Clang AST. Figure 2 illustrates an example
of C++ polymorphism.

Figure 3 illustrates the object models for the example classes Bird and
Penguin. The new front-end adds one or more vptrs to each class. The vptrs
will be initialized in the class constructors, which set each vptr pointing to
the desired vtable. The child class contains an additional pointer pointing to

7



1 class Bird {
2 public:
3 virtual int doit(void) { return 21; }
4 };
5

6 class Penguin: public Bird {
7 public:
8 int doit(void) override { return 42; }
9 };

10

11 int main() {
12 Bird *p = new Penguin();
13 assert(p->doit() == 42);
14 delete p;
15 return 0;
16 }

Figure 2: Example of C++ classes with virtual functions.

virtual_table::Bird@Bird

.doit(Bird*)=&tag.Bird::doit(Bird*)

Bird
Bird@Bird: vptr

Penguin
Bird@Penguin: vptr

Penguin@Penguin: vptr

virtual_table::Bird@Penguin

.doit(Bird*)=&thunk::Penguin::doit(Bird*)

virtual_table::Penguin@Penguin

.doit(Penguin*)=&tag.Penguin::doit(Penguin*)

Figure 3: Object models for Bird and Penguin classes

8



1 int return_value;
2 return_value =
3 *p->Bird@Penguin
4 ->doit(p)
5 assert(return_value == 42)

(a) GOTO program of the dynamic dis-
patch in Line 12 of Figure 2.

1 thunk::Penguin::doit(Bird*):
2 int return_value;
3 return_value =
4 Penguin::doit(
5 (Penguin*)this)
6 RETURN: return_value
7 END_FUNCTION
8

9 Penguin::doit(Penguin*):
10 RETURN: 42
11 END_FUNCTION

(b) Thunk redirecting the call to the overriding
function.

Figure 4: GOTO conversions of the overriding methods and dynamic dispatch.

a vtable with a thunk to the overriding function. The thunk redirects the call
to the corresponding overriding function. In case of multiple inheritances, the
child class would have multiple vtprs “inherited” from multiple base classes.
The new front-end can also manage virtual inheritance, such as the diamond
problem, which avoids duplicating vptrs, referring to the same virtual table
in an inheritance hierarchy. Lines 2-4 in Figure 4a illustrate how dynamic
dispatch is achieved using the vptr calling the thunk, which in turn calls the
desired overriding function in Figure 4b, lines 9-11. Note that the override
specifier is a C++11 extension that the old front-end could not support. As
shown in Process Flow 1, class definitions are parsed from Clang AST to
establish derived and base class relationships. An object model is created with
vptrs to the vtable. Method calls are redirected through vtpr to overriding
functions, or the base class function is invoked if no override exists.

Process Flow 1 Polymorphism
1: Parse the class definition from Clang AST to get the derived class and its base class
2: Create an object model for classes, storing each vtpr that point to the vtable.
3: if Use vtpr call thunk virtual functions then
4: Redirect the call to the corresponding overriding function
5: else
6: Call the base class function
7: end if

9



3.2. Templates
Templates are a key feature in C++, allowing types and certain values to

be passed as parameters to types, values and functions. Templates allow STL
containers and generic algorithms to work with different C++ data types [28,
29]. The old front-end in ESBMC v2.1 implements template specialization
based on Siek et al. [30, 13]. However, it produces a “CONVERSION ERROR”
for the test case illustrated in Figure 5a. This benchmark is based on the
Friend18 example from the GCC test suite [31], which was added for Bug
10158 on GCC Bugzilla [32]. ESBMC v7.6 successfully verified this benchmark
and found the assertion’s property violation in Figure 5a. The verification
result is illustrated in Figure 5b. The example in Figure 5a contains a C++20
extension. The foo function is defined in struct X but gets called using an
unqualified name with explicit template arguments in main. ESBMC v2.1
failed to verify it due to the “CONVERSION ERROR symbol ‘foo’ not found”.
We also tried this example with CBMC 5.88.1 [33] and cppcheck v2.11.1 [34],
both current as of the time of writing. CBMC aborted during type-checking,
while cppcheck did not provide any verification verdict. The Process Flow 2
shows how the Clang-based C++ front-end parses and processes templates.

1 #include <cassert>
2 template <int N> struct X
3 {
4 template <int M>
5 friend int foo(X const &)
6 {
7 return N * 10000 + M;
8 }
9 };

10 X<1234> bring;
11

12 int main() {
13 assert(
14 foo<5678> (bring)
15 !=12345678);
16 }

(a) Example of C++ class template

1 Violated property:
2 file tmp2.cpp
3 line 13 column 3
4 function main
5 assertion
6 foo<5678>(bring)

!=12345678
7 return_value!=12345678
8

9 VERIFICATION FAILED

(b) Verdict for the template example

Figure 5: ESBMC verified the Friend18 example from the GCC test suite. [31]

10



Process Flow 2 Templates
1: Parses Template Class definition and Friend Function Templates defined in it
2: Instantiate the Template Class and Friend Function Template
3: Convert Clang AST into an intermediate representation (IR)

3.3. C++ New and Delete
New and Delete are key operators for dynamic memory management in

C++. New is used to dynamically allocate memory space and assign a pointer
to that space to a variable, Delete is used to release the memory allocated by
New. Note that this can lead to memory safety issues if used incorrectly [9];
for example, if a pointer is not set to nullptr after releasing the memory, it is
a dangling pointer. When the program continues to use this dangling pointer,
it may lead to undefined behavior. ESBMC v7.6 can verify such memory
safety issues and the asserted property violation gives accurate information
as shown in Figure 6b.

1 class Foo {
2 public:
3 Foo() {value = 0;};
4 void Inc() {value++;};
5 private:
6 int value;
7 };
8

9 int main() {
10 Foo *foo = new Foo();
11 delete foo;
12 foo->Inc();
13 return 0;
14 }

(a) Example of C++ new and delete

1 Violated property:
2 file main6.cpp
3 line 4 column 17
4 function Inc
5 dereference failure:
6 invalidated dynamic object
7

8 VERIFICATION FAILED

(b) Verdict for the new example

Figure 6: ESBMC verified an example with new and delete

ESBMC v7.6 employs a flat memory model and treats dynamically allo-
cated memory as a contiguous region. It supports dynamic arrays and allows
pointer arithmetic, with strict bounds checking to prevent out-of-bounds
access while allowing unbounded array sizes. Built-in arrays track variables
that point to dynamic memory, including their size and validity; each dynamic

11



object is marked as invalid when deallocated using delete. It ensures the
validity of dynamic objects when accessed and modified, enabling it to verify
a wide range of memory safety issues, such as duplicate deallocation and
memory leaks. We also extend the implementation of delete to check whether
the correct operator is used based on the size. For example, memory allocated
for dynamic arrays should be released using the delete array operator, which
is not supported in ESBMC v2.1 [13].

The Process Flow 3 begins by parsing the new and delete operators and
the object from the Clang AST. The object is initialized, and a new dynamic
object is created and marked as valid. When the delete operator is invoked,
the memory allocation is verified for consistency, and the dynamic object
is marked as invalid. During dereferencing operations, the validity of the
dynamic object is checked to ensure safe access.

Process Flow 3 C++ New and Delete
1: Parse the New, Delete operators and object via Clang AST
2: Initialize the object (e.g., call the constructor)
3: Create a dynamic object for it and mark it as valid
4: if Call the Delete operator to free the memory allocated then
5: Check if the operator matches (e.g., new[] and delete[])
6: Mark the corresponding dynamic object as invalid
7: end if
8: if Dereference the dynamic object then
9: Check if the dynamic object is valid

10: end if

3.4. Rvalue References
Rvalue references were introduced in C++11, enhancing the efficiency of

object operations and its syntax is to append double & after the type [20].
As the foundation of move semantics, it allows transferring resources from
temporary objects to another object, eliminating the need for costly deep
copy operations. This greatly enhances the efficiency of object assignment
and passing, especially for large objects and dynamically allocated resources.

3.4.1. Move Semantics
ESBMC v7.6 models rvalue references and move semantics based on the

information provided by Clang AST; we also supported the move function,
which is used to convert the parameter into an rvalue reference explicitly.
As shown in Process Flow 4, we model rvalue references as pointers, which

12



are dereferenced when assigned an rvalue or involved in computations with
rvalues, including boolean operations. The example provided in Figure 7a
involves the usage of the move function and the assignment to rvalue reference.
Figure 7b illustrates our Clang-based C++ front-end’s modeling of rvalue
reference and the special treatment given to their operations. Assertions are
used to ensure the validity of each step of these operations.

1 #include <cassert>
2 #include <utility>
3 int main() {
4 int a = 10;
5 int &&rref = std::move(a);
6 assert(rref == 10);
7 rref = 5;
8 assert(rref == 5);
9 return 0;

10 }

(a) Example of Rvalue reference

1 signed int a;
2 a = 10;
3 signed int *rref;
4 signed int *return_value;
5 FUNCTION_CALL:
6 return_value = move(&a)
7 rref = return_value;
8 assert(*rref == 10);
9 *rref = 5;

10 assert(*rref == 5);

(b) GOTO program of Rvalue reference

Figure 7: ESBMC verified an example with Rvalue reference

3.4.2. Move Member Functions
Move constructors and move assignment operators are the main appli-

cations of rvalue references; they are typically used in classes that manage
resources, aiming to optimize resource movement and enhance efficiency. In
Clang, when a C++ class or struct does not explicitly define the move seman-
tics member functions, the compiler automatically generates them. The new
C++ front-end of ESBMC v7.6 parses these default member functions from
the Clang AST, while in ESBMC v2.1, undefined default member functions
were not feasible. In line 9 of Figure 8a, we use the default move constructor
to initialize the struct. Clang’s AST provides it since we have not explicitly
defined a constructor in the struct.

Process Flow 4 Rvalue References
1: Parse rvalue reference variable from Clang AST
2: Model the rvalue reference as a pointer
3: if Involves calculations with rvalues or assignments to rvalues then
4: Make special adjustment: dereference the pointer
5: end if

13



1 #include <cassert>
2 #include <utility>
3 struct MyStruct {
4 int value;
5 };
6

7 int main() {
8 MyStruct a{10};
9 MyStruct b(std::move(a));

10 assert(b.value == 10);
11 }

(a) Example of move member functions

1 MyStruct a;
2 a={ .value=10 };
3 MyStruct b;
4 struct MyStruct * return_value;
5 FUNCTION_CALL:
6 return_value = move(&a)
7 FUNCTION_CALL:
8 MyStruct(&b, return_value)
9 assert(b.value == 10);

(b) GOTO program of move member functions.

Figure 8: ESBMC verified an example with move member functions.

3.5. Exception Handling
Exception handling is a method that C++ uses to manage runtime

errors [35]; it helps programs handle errors safely and prevent the program
from crashing. This approach involves three main components: (1) the throw
statement, which is used to raise an exception, (2) the try block, which
contains the code that might throw an exception and directs to the first
matching catch statement, and (3) the catch statement, which handles the
exceptions raised by the throw statement. In our latest Clang-based C++
front-end, we have redesigned the exception handling mechanism, adopting
a method similar to that used in ESBMC v2.1. In the new implementation,
the front-end parses these components from the Clang AST, which enables
better handling complex constructs, such as nested exceptions.

The GOTO program in Figure 9b illustrates how exception handling
works. The first catch instruction marks the start of the try block. This
instruction holds the tag assigned to each catch statement and the target
location of their respective catch blocks. If an exception is thrown, ESBMC
follows defined rules to jump to the appropriate catch statement, including
potentially jumping to an invalid catch that triggers a verification error,
indicating that the exception cannot be caught. If a suitable exception
handler is found, the thrown value is assigned to the catch variable if one
exists; otherwise, an error will be reported if no valid handler is present. The
matching rules for exception handling are listed below:

1. Basic Type: Exceptions are caught if their type matches the catch type,

14



1 #include <cassert>
2 struct Base {};
3 struct Derived : Base{};
4

5 int main() {
6 try {
7 throw Derived();
8 }
9 catch(Base) {}

10 catch(Derived) {assert(0);}
11 return 0;
12 }

(a) Example of exception handling

1 CATCH tag-Base->1, tag-Derived->2
2 Derived tmp;
3 THROW tag-Derived, tag-Base: tmp
4 CATCH
5 GOTO 3
6 1: Base
7 GOTO 3
8 2: Derived
9 ASSERT false

10 3: RETURN: 0

(b) GOTO program of exception handling

Figure 9: ESBMC verified an example with exception handling

ignoring qualifiers such as const, volatile, and restrict.
2. Array and Pointer: A pointer type in the catch block can catch excep-

tions of the corresponding array type.
3. Function Pointer: A catch block for a pointer to a function can catch

exceptions of functions with the same return type.
4. Base Class: Exceptions derived unambiguously from the catch block’s

type are caught.
5. Convertible Type: Exceptions are caught if they can be converted to

the type specified in the catch block through standard conversions or
qualification adjustments.

6. Void Pointer: A void* in the catch block can catch any pointer type
exception.

7. Ellipsis: Any exception can be caught using an ellipsis (...) in the
catch block.

8. Re-throw: If no new exception is thrown, the last thrown exception
should be re-thrown.

We have extended the symbolic engine to improve exception handling in
ESBMC v7.6. As illustrated in Figure 9a, both exception handlers can catch
the thrown exception. In ESBMC v7.6, the exception will be caught by Base
in line 6, stopping the execution of subsequent exception handlers. Therefore,
this sample code will not trigger the assertion, and the verification result will
be successful.

15



As part of the exception handling mechanism, exception specifications
clarify a function’s exception behavior by defining which exceptions a function
can throw. In ESBMC v2.1, we implemented Dynamic Exception Specification,
which uses the throw keyword to declare a list of exception types that a function
can throw, and the first line of Figure 10 illustrates the two types of exceptions
that a function is allowed to throw: int and double. However, with updates
to the C++ standard, the Dynamic Exception Specification was deprecated
due to its limitations on flexibility. Consequently, we have supported Non-
Dynamic Exception Specification in the new front-end. As shown in the third
line of Figure 10, the noexcept keyword provides a modern way to declare
a function’s exception behavior. We used the THROW DECL instruction
at the beginning of the function to check if any thrown exceptions match
the exception specification. If the thrown exception violates the exception
specification, it will result in an assertion property violation.

1 void func() throw(int, double);
2

3 void func() noexcept;

Figure 10: Example of exception specification

From Process Flow 5, it is clear that exception handling involves parsing
the throw statement, try block, and catch block from the Clang AST. If
the function includes an exception specification, the thrown exception is
verified to conform to the specified constraints. When a throw statement is
executed within a try block, a matching catch block is checked. If such a
block can handle the exception, the execution jumps to it. Otherwise, an
assertion violation is reported for the unhandled exception. Similarly, if a
throw statement is executed outside any try block, an assertion violation is
raised due to the absence of a handler. Furthermore, if the throw occurs
during a function call and is not caught within that function, it will propagate
to the calling function.

3.6. C++ Operational Model
ESBMC employs an abstract representation of the STL known as the

C++ OMs, which are manually created and maintained. These models define
function contracts, including pre- and post-conditions, for the STL functions
and method calls they encompass, while also having side effects, such as

16



Process Flow 5 Exception Handling
1: Parse throw statement, try block and catch block from Clang AST
2: if Function has exception specification then
3: Check that the thrown exception conforms to the specification
4: end if
5: if Throw statement is executed inside a try block then
6: if A catch block exists and can catch that exception then
7: Jump to the corresponding catch block
8: else
9: Assertion property violation: Failure to catch an exception

10: end if
11: else if Throw statement is executed outside the try block then
12: Assertion property violation: Failure to catch an exception
13: end if

exception propagation. Verifying all these simplifies verification. These OMs
were developed based on the old front-end, which utilizes a CPROVER-based
parse tree for its type checker. Therefore, the static checking capabilities of
these OMs rely on maintenance. As the C++ standard updates, the code
within these OMs has gradually become outdated.

With our new Clang-based front-end, static checking has become more
compliant with C++ standards. This is due to Clang’s following of language
standards, advanced type deduction and checking mechanisms. Consequently,
ESBMC v7.6 can now detect and report potential program issues during
parsing. To adapt the OMs to the new front-end, we identified and addressed
parsing errors in the OMs that required fixes, as shown in Table 1. Conse-
quently, we updated the outdated code syntax, standardized variable names,
and improved readability.

Category Operational models
Containers vector, queue, deque, set, map, iterator, algorithm,

stack, bitset
Streams Input/Output istream, ios, ostream, sstream, fstream, streambuf

Strings string, string_view
Numeric numeric, valarry

Language Support typeinfo, exception
General memory, stdexcept

Localization locale

Table 1: Overview of the fixed C++ operational models

17



4. Experimental Evaluation

We used benchmarks from Monteiro et al. [13] to evaluate ESBMC v7.6,
which were previously used to assess ESBMC v2.1 in the same study.

We used benchmarks to verify the core C++ language features. There
are 532 test cases (TCs) in total over 6 benchmarks collections. The set of
benchmarks cpp contains example programs from the book C++ How to
Program [35]. The inheritance and polymorphism benchmarks are extracted
from [13]. There are three benchmark collections for template specialization
-- cbmc-template comes from the CBMC regressions [36]; gcc-template-tests
were extracted from the GCC template test suite [31]; template is also from
benchmarks used in [13]. The cpp set contains programs with mixed use of
various C++ language features combined with inheritance, polymorphism,
templates, and dynamic memory. Finally, we evaluated the 1001 TCs that
depend on the OMs in each benchmark, and these test cases contain the most
frequently used STL libraries.

4.1. Objectives and Setup
Our evaluation framework is based on BenchExec [37]. For each TC in

the test suite, we check whether the verification verdict reported by each tool
matches the expected outcome. A TC passes when the tool reports a verdict
of “VERIFICATION SUCCESSFUL” on a program without any violation
of properties or reports “VERIFICATION FAILED” on an unsafe program
that violates a property. Such properties include arithmetic overflows, array
out-of-bounds accesses, memory issues, or assertion failures. Our evaluation
aims to answer the following experimental questions:

EQ1 (soundness): Can ESBMC v7.6 give more correct verification
results and a higher pass rate than its previous versions?

EQ2 (performance): How long does ESBMC v7.6 take to verify C++
programs?

EQ3 (completeness): Does the tool implement the proposed improve-
ments in complex template support outlined as future work by
Monteiro et al. [13]?

The experiment was set up in Ubuntu 22.04 running on an 8-core Intel
CPU and 16GB RAM, with a time limit of 900 seconds and a memory limit
of 6GB. The dataset, scripts, and logs are publicly available on Zenodo [38].

18



The cumulative verification time represents the CPU time elapsed for each
tool finishing all benchmarks.

4.2. Results
Table 2 shows our experimental results. With a higher pass rate than

ESBMC v2.1 across all benchmarks and outperforming ESBMC v7.3 on 4
out of 6 benchmark sets, ESBMC v7.6 successfully achieved more correct
results, confirming EQ1. As for ESBMC v2.1, the failed TCs in cpp are due
to parsing or conversion errors, meaning the previous tool version is unable
to properly typecheck the input programs, probably due to the weak parser,
as described in Section 2. The failed TCs in inheritance and polymorphism
set contain a common feature of dynamically casting a pointer of a child class
with a base class containing virtual methods. ESBMC v2.1 could not handle
this type of casting, giving conversion errors.

EQ1: ESBMC v7.6 has a higher pass rate across all benchmarks
compared to v2.1 and v7.3, features a more powerful parser to support
more C++ features.

ESBMC v2.1 has limited support for C++ templates, matching our
expectations as reported by Monteiro et al. [13]. The failed TCs in the
cbmc-template set are the results of ESBMC v2.1 not able to handle the
default template type parameter or explicit template specialization combined
with C++ typedef specifier. The low pass rate of ESBMC v2.1 on the gcc-
template-tests set indicates that this version cannot verify test cases used by
an industrial-strength compiler. EQ3 is affirmed through the experiment, as
none of these problems persist in ESBMC v7.6.

ESBMC v7.3 demonstrates better accuracy than v2.1 in features like
inheritance and polymorphism, the failed TCs in the cpp and template sets
are caused by outdated OMs and conversion errors. This indicates a lack of
support for certain C++ syntax in the front-end and insufficient consideration
of some edge cases during the conversion process. Regarding ESBMC v7.6, it
addresses most of the parse and conversion errors in v7.3. However, some TCs
fail because Clang generates different ASTs depending on the C++ standard,
which the front-end does not yet fully support.

Only test cases verified correctly within the time limit are used for per-
formance comparison. There were two timeouts for ESBMC v2.1 and none
for v7.3 and v7.6. As illustrated in Figure 11, we conducted experiments

19



Benchmarks ESBMC-v2.1 ESBMC-v7.3 ESBMC-v7.6
cpp 71% 61% 83%

inheritance 73% 93% 93%
polymorphism 80% 84% 85%
cbmc-template 92% 97% 97%

gcc-template-tests 39% 71% 78%
template 53% 65% 81%

Total verification Time 1090s 71s 545s

Table 2: Experimental results showing the pass rate for each set of benchmarks and
accumulative verification time. This experiment uses ESBMC with Boolector SMT solver.

on each set of benchmarks. For simple benchmark sets like the inheritance
and polymorphism, the runtime of the three ESBMC versions is comparable.
However, for more complex benchmark sets, such as the cpp and template,
the performance of v7.6 and v7.3, which use the Clang-based C++ front-end,
shows improvements over v2.1. This is because the Clang-based front-end can
efficiently parse complex C++ syntax and generate high-quality AST. The
performance decrease from v7.6 to v7.3 results from the front-end’s extended
support for more advanced C++ features, which increases computational
cost.

EQ2: ESBMC v7.6 is more efficient than v2.1, and although slightly
slower than v7.3, it delivers better accuracy.

EQ3: ESBMC v7.6 handles complex template features more effectively
and offers better extensibility.

Overall, we have enhanced the template support in ESBMC v7.6, which
addresses a key aspect of the future work proposed by Monteiro et al. [13].
Compared to ESBMC v2.1, ESBMC v7.6 provides faster and more reliable
performance. Although v7.6 takes slightly longer than v7.3, it delivers a
notable improvement in the accuracy of results.

In addition to the pass rate and verification time in Table 2, we assessed
each tool’s memory usage. Table 3 shows each benchmark’s cumulative
maximum RSS (Resident Set Size) using each tool under evaluation. Our
metrics collection approach is based on BenchExec’s efficient monitoring

20



0 50 100 150 200 250 300

0.1

1

10

100

n-th test case

C
P
U
ti
m
e
(s
)

v2.1
v7.3
v7.6

(a) cpp set

0 2 4 6 8 10 12 14

0.1

1

10

100

n-th test case

C
P
U
ti
m
e
(s
)

v2.1
v7.3
v7.6

(b) inheritance set

0 10 20 30 40

0.1

1

10

100

n-th test case

C
P
U
ti
m
e
(s
)

v2.1
v7.3
v7.6

(c) polymorphism set

0 10 20 30 40

0.1

1

10

100

n-th test case

C
P
U
ti
m
e
(s
)

v2.1
v7.3
v7.6

(d) cbmc-template set

0 5 10 15 20 25

0.1

1

10

100

n-th test case

C
P
U
ti
m
e
(s
)

v2.1
v7.3
v7.6

(e) gcc-template-tests set

0 5 10 15 20

0.1

1

10

100

n-th test case

C
P
U
ti
m
e
(s
)

v2.1
v7.3
v7.6

(f) template set

Figure 11: CPU time comparison for ESBMC versions on 6 benchmark sets (correct results
only)

21



capabilities provided by the control groups memory subsystem [37]. Compared
to ESBMC v2.1, ESBMC v7.6 has high pass rates and uses less memory in
total. The increased memory usage in v2.1 for the cpp and template set is
because of its inefficiency in verifying test cases involving templates due to
its limitations in handling C++ templates and complex features effectively.
Many TCs failed due to a CONVERSION ERROR in ESBMC v2.1’s front-end
and never even reached the solver in the back-end. Figure 12 shows that
v2.1 uses less memory for simple TCs but consumes exponentially more for
complex ones. ESBMC with a Clang-based front-end achieves stable and
lower memory usage due to its efficient parsing and conversion processes.

Benchmarks ESBMC-v2.1 ESBMC-v7.3 ESBMC-v7.6
cpp 219000 MB 13800 MB 26900 MB

inheritance 236 MB 490 MB 653 MB
polymorphism 722 MB 1480 MB 1960 MB
cbmc-template 643 MB 1260 MB 1680 MB

gcc-template-tests 457 MB 1030 MB 1390 MB
template 20800 MB 691 MB 1240 MB

Total memory 242000 MB 18700 MB 33800 MB

Table 3: Experimental results showing each benchmark’s cumulative maximum RSS
(Resident Set Size). This experiment uses ESBMC with the Boolector SMT solver.

0 100 200 300 400

10

100

1 000

10 000

n-th test case

m
em

or
y
(M

B
)

v2.1
v7.3
v7.6

Figure 12: RSS comparison for ESBMC versions on all benchmarks (correct results only)

In ESBMC v2.1, we simulated the behavior of the C++ STL library using
OMs and added safety properties. Since then, our C++ front-end has been
completely rewritten based on Clang AST, and the back-end has undergone

22



significant development. Comparing v7.6 with v7.3, we have updated these
outdated OMs and resolved their issues. We believe it is essential to re-
evaluate v7.6 over the C++ STL library benchmarks [13] using these existing
OMs.

As shown in Table 4, ESBMC v2.1 has generally high pass rates across
most benchmarks, indicating strong support for OMs with security properties.
In v7.3, the refactored front-end and outdated OMs resulted in poor pass rates
due to the lack of support for several core language features. By comparison,
the pass rates for most benchmarks have significantly improved with v7.6,
with many returning to or exceeding the pass rates in v2.1. This indicates
that the adaptation of the new front-end to the OMs has largely been resolved.
Nevertheless, some benchmarks, such as Multiset, Set, and Deque, still lag
behind the performance seen in v2.1. Most of the test cases failed due
to parsing errors caused by initialization errors in the container OM. This
indicates a need for further improvement in our OMs. Additionally, some
errors arose from unsupported Clang AST nodes, and extending the front-end
to support these AST nodes remains an ongoing development effort.

Benchmarks ESBMC-v2.1 ESBMC-v7.3 ESBMC-v7.6
string 99% 0% 88%
stream 89% 33% 88%

algorithm 42% 0% 80%
deque 95% 0% 88%

list 53% 0% 65%
map 83% 0% 81%

multimap 89% 0% 91%
multiset 74% 0% 18%

priority-queue 100% 0% 87%
set 83% 0% 60%

stack 86% 0% 86%
vector 22% 0% 89%

try-catch 88% 0% 80%

Table 4: Pass rates of OM-dependent benchmarks for C++ STL libraries.

4.3. Performance Using Different SMT Solvers
ESBMC v7.6 supports multiple SMT solvers in the back-end, such as

Z3 [39], Bitwuzla [40], Boolector [41], MathSAT [42], CVC4 [43], CVC5 [44]
and Yices [45]. We also evaluated ESBMC v7.6 with various solvers over

23



the same set of benchmarks. Table 5 shows the total verification time and
memory consumption for ESBMC v7.6 using different solvers.

Solvers Time Memory
Boolector 545s 33800 MB

CVC4 2230s 44100 MB
CVC5 1420s 42300 MB

MathSAT 2930s 50500 MB
Yices 1270s 40800 MB

Z3 1430s 34300 MB
Bitwuzla 549s 38700 MB

Table 5: Experimental results showing the total verification time and memory consumption
for ESBMC v7.6 using different solvers.

Overall, ESBMC v7.6 with Boolector is the fastest configuration that
consumes the minimum amount of memory to verify all benchmarks, while
Bitwuzla performs similarly but consumes more memory. Among the other
solvers, the memory consumption of ESBMC v7.6 with Z3 is close to the
Boolector configuration.

4.4. Threats to Validity
While developing the new C++ front-end, we encountered challenges

in determining the correct order of constructor and destructor calls for the
most derived class when analyzing complex inheritance hierarchies in Clang
AST, such as the diamond inheritance pattern. We documented it under an
umbrella issue currently in our backlog [46] on ESBMC GitHub repository [47].
ESBMC v2.1 mimics the semantics of the APIs of C++ STL libraries using a
set of OMs. The C++ front-end of ESBMC has been completely rewritten,
and the back-end has also undergone significant development and evolution
since v2.1 was published in [13]. Additionally, the number of these OMs
is large, and for libraries without added safety properties, using the C++
standard library directly is the best solution. However, it is uncertain whether
ESBMC’s C++ front-end can fully support the standard library.

5. Conclusions and Future Work

We present a new Clang-based front-end that converts in-memory Clang
AST to ESBMC’s IR. In our evaluation of ESBMC v7.6, we compared it

24



to ESBMC v2.1 and v7.3, specifically focusing on benchmarks to cover core
C++ language features. The results demonstrate significant progress with
ESBMC v7.6, as it successfully handles real-world C++ programs, including
those from the GCC test suite. Notably, it significantly reduces the number
of conversion and parse errors compared to the previous version, showcasing
improved performance over the benchmarks for core language features.

While ESBMC effectively mimics the semantics of APIs of the STL libraries
using the OMs from ESBMC v2.1, we recognize the need for continuous
improvement. As we endeavor to verify modern C++ programs, these OMs
require regular review and updates to align with the C++ standard used in the
input program. Accurate OMs are essential, as any approximation may lead to
incorrect encoding and invalidate the verification results. With ESBMC v7.6,
we improved the front-end, updated the OMs, and added support for more
core C++ language features. Overall, while our Clang AST-based C++ front-
end has not fully restored or improved performance across all benchmarks,
the experimental results show substantial improvements compared to previous
versions. This highlights the potential of the new front-end.

Furthermore, as part of the remaining future work from Monteiro et
al. [13], our OMs have yet to support certain C++11 features, including new
sequential and unordered associative containers, as well as multithreaded
libraries, which remain areas for future development. Our previous success
verifying a commercial C++ telecommunication application using ESBMC
v2.1 has inspired further goals [48, 13]. With ESBMC v7.6 and beyond,
we plan to verify the C++ interpreter in OpenJDK as part of the Soteria
project [49].

6. Acknowledgements

The ESBMC development is currently funded by ARM, Intel, EPSRC
grants EP/T026995/1, EP/V000497/1, EU H2020 ELEGANT 957286, and
Soteria project awarded by the UK Research and Innovation for the Digital
Security by Design (DSbD) Programme.

References

[1] K. Song, M. Ramalho, F. Brauße, R. Menezes, L. Cordeiro, ESBMC v7.3:
Model Checking C++ Programs Using Clang AST, 2023, pp. 141–152.
doi:10.1007/978-3-031-49342-3_9.

25

https://doi.org/10.1007/978-3-031-49342-3_9


[2] P. J. Deitel, H. M. Deitel, C++ How to Program: Introducing the New
C++14 Standard, 2016.

[3] M. Miller, Trends and Challenges in the Vulnerability Mitigation Land-
scape, USENIX Association (2019).

[4] J. Fan, Y. Li, S. Wang, T. N. Nguyen, A C/C++ Code Vulnerability
Dataset with Code Changes and CVE Summaries, in: Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[5] Common Vulnerabilities and Exposures database.
URL https://cve.mitre.org/

[6] Common Weakness Enumeration.
URL https://cwe.mitre.org/about/index.html

[7] S. Quadri, S. U. Farooq, Software Testing–Goals, Principles and Lim-
itations, International Journal of Computer Applications 6 (9) (2010)
1.

[8] P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge
University Press, 2016.

[9] F. R. Monteiro, M. Garcia, L. C. Cordeiro, E. B. de Lima Filho,
Bounded model checking of C++ programs based on the Qt cross-
platform framework, Softw. Test. Verification Reliab. 27 (3) (2017).
doi:10.1002/stvr.1632.
URL https://doi.org/10.1002/stvr.1632

[10] N. Chong, B. Cook, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-
Narbonne, S. Tasiran, M. Tautschnig, M. R. Tuttle, Code-level Model
Checking in the Software Development Workflow, in: 2020 IEEE/ACM
42nd International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP), IEEE, 2020, pp. 11–20.

[11] E. Clarke, D. Kroening, F. Lerda, A Tool for Checking ANSI-C Programs,
in: Tools and Algorithms for the Construction and Analysis of Systems:
10th International Conference, TACAS 2004, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2004,

26

https://cve.mitre.org/
https://cve.mitre.org/
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://doi.org/10.1002/stvr.1632
https://doi.org/10.1002/stvr.1632
https://doi.org/10.1002/stvr.1632
https://doi.org/10.1002/stvr.1632


Barcelona, Spain, March 29-April 2, 2004. Proceedings 10, Springer,
2004, pp. 168–176.

[12] Z. Baranová, J. Barnat, K. Kejstová, T. Kučera, H. Lauko, J. Mrázek,
P. Ročkai, V. Štill, Model Checking of C and C++ With DIVINE 4, in:
Automated Technology for Verification and Analysis: 15th International
Symposium, ATVA 2017, Pune, India, October 3–6, 2017, Proceedings
15, Springer, 2017, pp. 201–207.

[13] F. R. Monteiro, M. R. Gadelha, L. C. Cordeiro, Model Checking C++
Programs, Software Testing, Verification and Reliability 32 (1) (2022)
e1793. doi:https://doi.org/10.1002/stvr.1793.

[14] L. Cordeiro, B. Fischer, J. Marques-Silva, SMT-based Bounded Model
Checking for Embedded ANSI-C Software, IEEE Transactions on Soft-
ware Engineering 38 (4) (2011) 957–974.

[15] LLVM Clang.
URL https://clang.llvm.org/

[16] M. Ramalho, M. Freitas, F. Sousa, H. Marques, L. Cordeiro, B. Fis-
cher, SMT-based Bounded Model Checking of C++ Programs, in: 2013
20th IEEE International Conference and Workshops on Engineering of
Computer Based Systems (ECBS), IEEE, 2013, pp. 147–156.

[17] C++20 Standard.
URL https://www.iso.org/standard/79358.html

[18] B. C. Lopes, R. Auler, Getting Started With LLVM Core Libraries, Packt
Publishing Ltd, 2014.

[19] M. Pandey, S. Sarda, LLVM cookbook, Packt Publishing Ltd, 2015.

[20] N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference
(2012).

[21] G. Dos Reis, J. D. García, F. Logozzo, M. Fähndrich, S. Lahiri, Simple
Contracts for C++(R1) (2015).

[22] S. Muchnick, Advanced Compiler Design Implementation, Morgan kauf-
mann, 1997.

27

https://doi.org/https://doi.org/10.1002/stvr.1793
https://clang.llvm.org/
https://clang.llvm.org/
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html


[23] D. Kroening, J. Ouaknine, O. Strichman, T. Wahl, J. Worrell, Linear
Completeness Thresholds for Bounded Model Checking, in: Computer
Aided Verification: 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings 23, Springer, 2011, pp. 557–572.

[24] M. R. Gadelha, F. Monteiro, L. Cordeiro, D. Nicole, ESBMC v6. 0:
Verifying C Programs Using k-Induction and Invariant Inference: (Com-
petition Contribution), in: Tools and Algorithms for the Construction
and Analysis of Systems: 25 Years of TACAS: TOOLympics, Held as Part
of ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings,
Part III 25, Springer, 2019, pp. 209–213.

[25] ESBMC L312-L359.
URL https://github.com/esbmc/esbmc/blob/master/src/cpp/
cpp_typecheck_compound_type.cpp

[26] C++03 Standard.
URL https://www.iso.org/standard/38110.html

[27] L. C. Cordeiro, B. Fischer, Verifying Multi-Threaded Software Us-
ing SMT-based Context-Bounded Model Checking, in: R. N. Taylor,
H. C. Gall, N. Medvidovic (Eds.), Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE 2011, Waikiki, Hon-
olulu, HI, USA, May 21-28, 2011, ACM, 2011, pp. 331–340. doi:
10.1145/1985793.1985839.
URL https://doi.org/10.1145/1985793.1985839

[28] S. Prata, C++ Primer Plus, Pearson Education India, 2012.

[29] B. Stroustrup, The C++ Programming Language Fourth Edition (2013).

[30] J. Siek, W. Taha, A Semantic Analysis of C++ Templates, in: European
Conference on Object-Oriented Programming, Springer, 2006, pp. 304–
327.

[31] GCC test suite.
URL https://gcc.gnu.org/git/p=gcc.git;a=blob_plain;f=gcc/
testsuite/g%2B%2B.dg/template/friend18.C;hb=649fc72d2

[32] GCC Bugzilla Bug 10158.
URL https://gcc.gnu.org/bugzilla/show_bug.cgi?id=10158

28

https://github.com/esbmc/esbmc/blob/master/src/cpp/cpp_typecheck_compound_type.cpp
https://github.com/esbmc/esbmc/blob/master/src/cpp/cpp_typecheck_compound_type.cpp
https://github.com/esbmc/esbmc/blob/master/src/cpp/cpp_typecheck_compound_type.cpp
https://www.iso.org/standard/38110.html
https://www.iso.org/standard/38110.html
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://gcc.gnu.org/git/p=gcc.git;a=blob_plain;f=gcc/testsuite/g%2B%2B.dg/template/friend18.C;hb=649fc72d2
https://gcc.gnu.org/git/p=gcc.git;a=blob_plain;f=gcc/testsuite/g%2B%2B.dg/template/friend18.C;hb=649fc72d2
https://gcc.gnu.org/git/p=gcc.git;a=blob_plain;f=gcc/testsuite/g%2B%2B.dg/template/friend18.C;hb=649fc72d2
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=10158
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=10158


[33] CBMC 5.88.1.
URL https://github.com/diffblue/cbmc/releases/tag/cbmc-5.
88.1

[34] Cppcheck.
URL https://cppcheck.sourceforge.io/

[35] P. Deitel, H. Deitel, C++ How to Program, Sixth Edition, Prentice Hall
Press, USA, 2007.

[36] CBMC Regression Test Suite.
URL https://github.com/diffblue/cbmc/tree/develop/
regression/cbmc-cpp

[37] D. Beyer, S. Löwe, P. Wendler, Reliable Benchmarking: Requirements
and Solutions, Int. J. Softw. Tools Technol. Transf. 21 (1) (2019) 1–29.
doi:10.1007/s10009-017-0469-y.
URL https://doi.org/10.1007/s10009-017-0469-y

[38] X. Li, ESBMC v7.6 evaluation (2025).
URL https://zenodo.org/records/14824495

[39] L. d. Moura, N. Bjørner, Z3: An Efficient SMT Solver, in: International
conference on Tools and Algorithms for the Construction and Analysis
of Systems, Springer, 2008, pp. 337–340.

[40] A. Niemetz, M. Preiner, Bitwuzla, in: C. Enea, A. Lal (Eds.), Computer
Aided Verification - 35th International Conference, CAV 2023, Paris,
France, July 17-22, 2023, Proceedings, Part II, Vol. 13965 of Lecture
Notes in Computer Science, Springer, 2023, pp. 3–17.

[41] R. Brummayer, A. Biere, Boolector: An Efficient SMT Solver for Bit-
Vectors and Arrays, in: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, Springer, 2009, pp.
174–177.

[42] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, The
MathSat 4 SMT Solver, in: International Conference on Computer Aided
Verification, Springer, 2008, pp. 299–303.

29

https://github.com/diffblue/cbmc/releases/tag/cbmc-5.88.1
https://github.com/diffblue/cbmc/releases/tag/cbmc-5.88.1
https://github.com/diffblue/cbmc/releases/tag/cbmc-5.88.1
https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/
https://github.com/diffblue/cbmc/tree/develop/regression/cbmc-cpp
https://github.com/diffblue/cbmc/tree/develop/regression/cbmc-cpp
https://github.com/diffblue/cbmc/tree/develop/regression/cbmc-cpp
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://zenodo.org/records/14824495
https://zenodo.org/records/14824495


[43] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, C. Tinelli, Cvc4, in: International Conference on Computer
Aided Verification, Springer, 2011, pp. 171–177.

[44] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, et al., cvc5: A Ver-
satile and Industrial-Strength SMT Solver, in: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
Springer, 2022, pp. 415–442.

[45] B. Dutertre, Yices 2.2, in: International Conference on Computer Aided
Verification, Springer, 2014, pp. 737–744.

[46] ESBMC Cpp Support Feature Coverage and Backlog.
URL https://github.com/esbmc/esbmc/wiki/ESBMC-Cpp-Support

[47] Github, ESBMC Issue 940: Umbrella Issue For the Order of Ctors/Dtors.
URL https://github.com/esbmc/esbmc/issues/940

[48] F. R. M. Sousa, L. C. Cordeiro, E. B. de Lima Filho, Bounded Model
Checking of C++ Programs Based on the Qt Framework, in: IEEE 4th
Global Conference on Consumer Electronics, GCCE 2015, Osaka, Japan,
27-30 October 2015, IEEE, 2015, pp. 179–180. doi:10.1109/GCCE.2015.
7398699.
URL https://doi.org/10.1109/GCCE.2015.7398699

[49] UKRI, Sotereia Project.
URL https://soteriaresearch.org/

30

https://github.com/esbmc/esbmc/wiki/ESBMC-Cpp-Support
https://github.com/esbmc/esbmc/wiki/ESBMC-Cpp-Support
https://github.com/esbmc/esbmc/issues/940
https://github.com/esbmc/esbmc/issues/940
https://doi.org/10.1109/GCCE.2015.7398699
https://doi.org/10.1109/GCCE.2015.7398699
https://doi.org/10.1109/GCCE.2015.7398699
https://doi.org/10.1109/GCCE.2015.7398699
https://doi.org/10.1109/GCCE.2015.7398699
https://soteriaresearch.org/
https://soteriaresearch.org/

	Introduction
	Background
	SMT-based BMC technique
	Old C++ front-end in v2.1

	Model Checking C++ Programs using Clang AST
	Polymorphism
	Templates
	C++ New and Delete
	Rvalue References
	Move Semantics
	Move Member Functions

	Exception Handling
	C++ Operational Model

	Experimental Evaluation
	Objectives and Setup
	Results
	Performance Using Different SMT Solvers
	Threats to Validity

	Conclusions and Future Work
	Acknowledgements

