
ESBMC v7.7: Efficient Concurrent Software
Verification with Scheduling, Incremental SMT

and Partial Order Reduction

(Competition Contribution)

Tong Wu1⋆ , Xianzhiyu Li1 , Edoardo Manino1 , Rafael Sá Menezes1,2 ,
Mikhail R. Gadelha3 , Shale Xiong5 , Norbert Tihanyi4 , Pavlos

Petoumenos1 , and Lucas C. Cordeiro1,2

1 The University of Manchester, Manchester, UK
2 Federal University of Amazonas, Manaus, Brazil

3 Igalia, A Coruña, Spain
4 Eötvös Loránd University, Budapest, Hungary

5 Arm®, Cambridge, UK

Abstract. ESBMC v7.7 improves the verification of concurrent C pro-
grams by incorporating techniques such as dynamic thread scheduling,
incremental SMT solving, and partial order reduction (POR). These
improvements enhance the tool’s performance, particularly in explor-
ing complex multi-threaded executions. The new scheduler prioritizes
higher-thread identifiers during context switches, which helps explore
deeper program states. The use of incremental SMT solving and a refined
POR algorithm reduces the exploration of unreachable interleavings and
redundant states. These updates enable ESBMC to detect bugs faster,
making it a more effective tool for ensuring the safety of multi-threaded
applications.

1 Software Architecture

The Efficient SMT-based context-Bounded Model Checker (ESBMC) [?,?,?] is a
context-bounded model checker for the verification of single- and multi-threaded
software. It uses a Clang-based [?] front-end to transform the input C program
into an intermediate representation in the GOTO language [?]. Then, it employs
symbolic execution to generate SMT formulae and pass them to a selection of
SMT solvers. For the verification of multi-threaded software, ESBMC constructs
the reachability tree by depth first search under Sequential Consistency [?]. This
way, it can symbolically and explicitly explore all possible sequential executions
up to a (bounded) number of context switches. As a result, ESBMC can auto-
matically identify many concurrency-related issues such as race conditions and
deadlocks.

⋆ Jury member

http://orcid.org/0000-0002-0986-4150
http://orcid.org/0009-0003-7712-380X
http://orcid.org/0000-0003-0028-5440
http://orcid.org/0000-0002-6102-4343
http://orcid.org/0000-0001-6540-6587
http://orcid.org/0000-0001-9312-195X
http://orcid.org/0000-0002-9002-5935
http://orcid.org/0000-0002-1497-6536
http://orcid.org/0000-0002-6235-4272


2 Verification Approach

Reverse Priority Scheduling. ESBMC v7.7 introduces an advanced thread schedul-
ing algorithm that dynamically prioritizes thread selection when a context switch
occurs. In earlier versions, the scheduler would always search for eligible threads
in ascending order of thread identifier ti,

6 starting with the main thread id
ti = 0 [?]. The new approach modifies this behavior as follows:

1○ It first attempts to identify newer thread, which have identifier ti higher
than the current thread tc. Among these threads, the scheduler selects the
one with the smallest identifier that is eligible for scheduling.

2○ If no newer threads are available, the scheduler reverses the search direction
and looks for older eligible threads, which have identifier ti ≤ tc. Note that
the scheduler can still choose tc, which indicates it will continue executing
the following steps in the current thread. In this case, it selects the eligible
thread with the largest identifier.

3○ If no eligible threads are found in either direction, there is no further inter-
leaving possible in the current execution state. Thus, the scheduler reverts
to exploring unexplored states by popping the current state from the reach-
ability tree and backtracking.

The formal policy σ for our reverse priority scheduling can be expressed as:

σ(tc, S) =


min{ti|ti ∈ S ∧ ti > tc} if maxS > tc 1○
maxS if maxS ≤ tc 2○
∅ if S = ∅ 3○

where tc is the current thread and S represents the set of all threads eligible for
scheduling. In general, this strategy prioritizes interleavings with newly-created
threads, enabling ESBMC to explore new execution paths earlier, which allows
ESBMC to find bugs six times faster (see Section 3).

Incremental SMT Solving. ESBMC leverages incremental SMT solving [?] in an
attempt to reduce the exploration of unreachable interleavings. Specifically, non-
incremental mode only calls the SMT solver once when reaching the end of an
interleaving. As such, it has no early mechanism to determine which boolean con-
ditions hold (e.g., assumptions), thus producing a formula that may still contain
some unreachable states. In contrast, incremental mode removes all unreachable
states by checking goto guards (if and loop conditions), thread guards (inter-
leaving conditions) and assertions immediately [?]. This is achieved through
the push/pop interface offered by many state-of-the-art solvers [?,?,?,?]. Fig-
ure 1 illustrates the different behaviour after the thread guard pthread join. In
ESBMC v7.7, we add incremental checking of assumptions with the --smt-symex-assume
option.

6 New threads are created with higher identifiers in ESBMC.



1 #include <pthread.h>
2 int x = 0;
3 void *thread1 () {
4 x = 1;
5 return 0;
6 }
7 int main() {
8 pthread_t t1;
9 pthread_create (&t1,

0, thread1 , 0);
10 pthread_join(t1, 0);
11 x = 2;
12 }

8, 9

4 10, 11

5, 6 10, 11 4 12

10, 11 5, 6 12 5, 6 12

12 12 12

Fig. 1. Reachability tree (right) of a concurrent program (left). Boxes are execution
states (by line number), red arrows are reachable paths, black dotted arrows are un-
reachable paths that can be cut by incremental SMT.

Partial Order Reduction. ESBMC employs an optimal partial order reduction
algorithm based on the normal form in [?] to eliminate redundant equivalent
interleavings during model checking. In ESBMC v7.7, we refine our implementa-
tion by performing a more accurate analysis of shared read/write variables that
are accessed by global and local pointers. Specifically, memory leak checks are
deferred until the main thread has terminated. This strategy avoids false posi-
tives, since in SV-COMP the check should happen after program termination.

Data Races. ESBMC v7.7 offers extended support for data race checking. The
base method introduces a boolean flag bx for each variable x involved in an
assignment. When x is updated, bx is set to true before the assignment and reset
to false immediately after. To identify data races, an assertion ensures that bx is
false whenever x is accessed. Previous versions relied on unique flag identifiers
generated from variable names. As such, the same memory address could be
protected by multiple flags, especially for arrays with non-constant indices and
members of compound types. The new version eliminates the dependency on
variable names. Memory is represented as an infinite-size array, where variables
are encoded as addresses and used as indices of the array. Additionally, we force
an extra context switch when setting each flag to increase the probability of
triggering a data race earlier.

Pthread Operational Models. ESBMC v7.7 features improved operational mod-
els for the pthread library, which reduces the number of unnecessary context
switches. Specifically, we restrict context switches to occur exclusively on user
program variables which are shared by at least two threads.

3 Strengths and Weaknesses

Table 1 reports the relative performance of each individual technique in Section
2, compared to the previous version of ESBMC. The last row reports their cu-
mulative effect in ESBMC v7.7, which has Incremental SMT disabled and POR



partially enabled by default (more information can be found in zenodo dataset).
All results are computed on the SV-COMP’25 ConcurrencySafety benchmarks.

Table 1. Experimental Results for ESBMC Improvements

Individual Technique Correct True Correct False Incorrect True Incorrect False

Reverse Priority Scheduling +66 +18 +8 +7

Incremental SMT Solving -3 +1 +3 +6

Partial Order Reduction +16 -20 +15 +0

Data Races -5 +16 -9 -14

Pthread Operational Models +31 +3 +5 +3

ESBMC v7.7 +97 +21 +13 +10

In addition, our experiments show that Reverse Priority Scheduling acceler-
ates bug detection by approximately 600%, and the first interleaving is enough to
reach a bug in 59 additional instances. Furthermore, Incremental SMT achieves
an average of 53% fewer interleavings on the 248 instances verified by both ap-
proaches and produces 18 unique correct results that would otherwise timeout.
However, the repeated solver calls increase verification time, with fewer successful
verifications than the non-incremental mode. Finally, Partial Order Reductions
reduce the verification time required to prove correctness by 40%.

At the same time, the improvements expose 23 new incorrect results that were
previously timeouts. Additionally, the Partial Order Reduction improvements
turn 20 correct results into 15 incorrect results and 5 timeouts. These are mainly
due to the low context-switch limit of 3 we set and the absence of a mechanism
to detect shared memory access between local variables and pointers. We plan
to address these issues in future work.

4 Tool Setup and Configuration

To setup and run ESBMC, follow the instructions in the README.md file.
ESBMC can also be run via the Python wrapper esbmc-wrapper.py for sim-
plifed usage in the competition. An example command line is: esbmc-wrapper.py
-s kinduction -a 64 -p unreach-call.prp example.c

5 Software Project

The ESBMC development is funded by ARM, EPSRC EP/T026995/1, EPSRC
EP/V000497/1, Ethereum Foundation, EU H2020 ELEGANT 957286, UKRI So-
teria, Intel, and Motorola Mobility (through Agreement N° 4/2021). It is publicly
available at http://esbmc.org under the Apache License 2.0. The participated
version in SV-COMP 2025 is available at https://doi.org/10.5281/zenodo.
13867976. A refined version and all of our experiments data are available at
https://doi.org/10.5281/zenodo.14534503.

http://esbmc.org
https://doi.org/10.5281/zenodo.13867976
https://doi.org/10.5281/zenodo.13867976
https://doi.org/10.5281/zenodo.14534503

	ESBMC v7.7: Efficient Concurrent Software Verification with Scheduling, Incremental SMT and Partial Order Reduction

